Verification Machinery

Table of Contents

Verification From Ten Thousand Feet

The picture below is yet another way to slice the RATS architecture, which makes the (important) distinction between "identity endorsements" (e.g., verification keys), and "endorsed values" (e.g., certification status of the gadget, color, etc.), which is not explicit in RFC9334.

This distinction becomes relevant when zooming in to the appraisal process where one kind or the other is used depending on the verification "stage."

flowchart TD
    R[(reference</br>values)]
    Ev[(endorsed</br>values)]
    Ei[(identity</br>endorsement)]
    P[(appraisal policy</br>for evidence)]
    VO([verifier</br>owner])
    RFP([reference</br>value</br>provider])
    E([endorser])
    RP([relying</br>party])
    A([attester])
    e((Evidence))
    a((Attestation</br>Result))
    V([verifier])

    subgraph " "
    Ev
    Ei
    end

    subgraph " "
    R
    end
    
    subgraph " "
    P
    end

    VO --> P
    RFP --> R
    E --> Ev
    E --> Ei
    P --> V
    R --> V
    RP --> e
    A --> e
    Ev --> V
    Ei --> V
    V --> a
    e --> V
    A -.-> RP

A Closer Look to the Appraisal Process

The picture below provides a closer look in to the appraisal process, describing what a typical verification flow could look like. The flow is broken down into four separate stages:

Crypto Verification Reference Values match Endorsed Values Decoration Attestation Result assembly and signing

Notes:

  • The appraisal policy is an input to all the processing stages
  • All non-final processing stages can output a "failure" signal that short circuits the appraisal
flowchart TD
    v1[crypto</br>verification]
    v2[refval</br>match]
    v3[endorsed values</br>decoration]
    v4[AR assembly</br>and signing]
    Ei[(identity</br>endorsement)]
    e((Evidence))
    P[(appraisal policy</br>for evidence)]
    skV>verifier signing key]
    a((Attestation</br>Result))
    R[(reference</br>values)]
    Ev[(endorsed</br>values)]

    subgraph " "
    Ev
    Ei
    end

    subgraph " "
    R
    end
    
    subgraph " "
    P
    end

    subgraph stages["verifier stages"]
    v1
    v2
    v3
    v4
    end

    subgraph " "
    skV
    end

    e --> v1
    Ei --> v1
    v1 -- evidence claims-set --> v2
    P --> stages
    v2 -- evidence claims-set --> v3
    v3 -- evidence claims-set</br>derived claims-set --> v4
    skV --> v4
    v4 --> a
    R --> v2
    Ev --> v3
    v1 -- failure -->v4
    v2 -- failure -->v4

Crypto Verification

Input:

  • Evidence to be verified
  • Identity endorsements
  1. Look up the matching identity endorsement / trust anchor (e.g., a raw public key, an x509 cert, etc.)
  2. Use the key material to verify the Evidence's cryptographic envelope

Output:

  • the (cryptographically verified) Evidence's claims-set
flowchart TD
    v1[crypto</br>verification]
    Ei[(identity</br>endorsement)]
    e((Evidence))
    P[(appraisal policy</br>for evidence)]
    Ecs((evidence</br>claims-set))
    FAIL((("failure")))

    v1 --> FAIL
    Ei --> v1
    e --> v1
    v1 --> Ecs
    P --> v1

Reference Values match

Input:

  • Evidence claims-set
  • Reference values
  1. Look up any applicable reference values
  2. Match reference values against the claims-set

Output:

  • (validated) Evidence claims-set
flowchart TD
    v2[refval</br>match]
    P[(appraisal policy</br>for evidence)]
    R[(reference</br>values)]
    Ecs1((evidence</br>claims-set))
    Ecs2((evidence</br>claims-set))
    FAIL((("failure")))

    v2 --> FAIL
    v2 --> Ecs2
    R --> v2
    Ecs1 --> v2
    P --> v2

Endorsed Values Decoration

Input:

  • The Evidence claims-set
  • Endorsed values
  1. Look up applicable endorsed values
  2. decide (based on policy) which endorsed values can be added to the claims-set

Output:

  • Evidence claims-set
  • Derived claims-set
flowchart TD
    v3[endorsed values</br>decoration]
    P[(appraisal policy</br>for evidence)]
    Ev[(endorsed</br>values)]
    Ecs1((evidence</br>claims-set))
    Ecs2((evidence</br>claims-set))
    Dcs((derived</br>claims-set))
    FAIL((("failure")))

    Ev --> v3
    Ecs1 --> v3
    v3 --> FAIL
    v3 --> Dcs
    v3 --> Ecs2
    P --> v3

Attestation Result assembly and signing

Input:

  • Evidence and Derived claims-set, or a failure signal
  • the Verifier private key that signs the attestation result
  1. Determine the attestation result claims-set based on the input claims-set and policy
  2. Sign the final attestation result statement

Output:

  • Signed attestation results
flowchart TD
    v4[AR assembly</br>and signing]
    P[(appraisal policy</br>for evidence)]
    skV>verifier signing key]
    a((Attestation</br>Result))
    Ecs((evidence</br>claims-set))
    Dcs((derived</br>claims-set))
    FAIL((("failure")))

    FAIL --> v4
    Ecs --> v4
    Dcs --> v4
    P --> v4
    skV --> v4
    v4 --> a